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Lecture 7.5.2 : 
Columns II

SUMMARY: The analysis of imperfections, leading to the derivation of the Ayrton-Perry 
formula and the European buckling curves, is explained and justified. The concepts of 
torsional and flexural-torsional buckling are introduced for the case of simple compression 
members.



1. INTRODUCTION
The behaviour of real steel structures is always different from that predicted theoretically; the main 
reasons for this discrepancy are:
• geometrical imperfections, due to defects causing lack of straightness, unparallel flanges, 

asymmetry of cross-section etc;

• material imperfections, due to residual stresses (caused by the rolling or fabrication process) or 
material inelasticity;

• deviation of applied load from idealised position due to imperfect connections, erection 
tolerances or lack of verticality of the member.

Of the above, some are important in the buckling of slender columns (geometrical imperfections), 
others in the compression of stub columns (material inelasticity) and others in the buckling of 
columns of medium slenderness (geometric imperfections and residual stresses). The behaviour of 
these three types of columns is described in Lecture 7.5.1.
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1. INTRODUCTION
In reality, all the imperfections act together simultaneously and their effect depends on their 
individual intensity and on the slenderness of the column. An experimental study of many columns 
with various characteristics gives the results shown in Figure 1. The results of the tests should be 
below the Euler buckling curve because initial out-of-straightness, eccentricity of applied loads and 
residual stresses all decrease the allowable buckling load; for small slenderness (stub columns), 
however, it is possible to find some results above the yield stress line because of possible strain-
hardening. A safety curve obtained through a statistical analysis is always situated under the 
minimum experimental values and has the form shown in Figure 1; the plateau is necessary to limit 
the allowable stress to the yield value. This is the general form of the European buckling curves [1, 
2].
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1. INTRODUCTION
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2. ANALYTICAL FORMULATION OF THE EUROPEAN BUCKLING CURVES
2.1 Initial Deflection
Assuming that the initial deflection of a pin-ended column of length l, has a half sine-wave form 
with magnitude eo (Figure 2), the initial deformation along the column can be written as:

The differential equation for the deformation of 
such a pin-ended column loaded by an axial force N is:

Combining this with the expression for yo, and taking into account the boundary conditions, the 
solution of this equation is:
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2. ANALYTICAL FORMULATION OF THE EUROPEAN BUCKLING CURVES
2.1 Initial Deflection
The maximum total deflection, e, of the column is then:

and the ratio 1/(1 - N/Ncr) is generally called the "amplification factor".
Taking into account the maximum bending moment, Ne, due to buckling, the equilibrium of the 
column requires that:

where fy is the yield stress.

If N is the maximum axial load, limited by buckling, and σb the maximum normal stress (σb = N/A), 
this becomes:
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2. ANALYTICAL FORMULATION OF THE EUROPEAN BUCKLING CURVES
2.1 Initial Deflection
or, introducing σcr, the Euler critical stress (σcr = π2E/λ2) and including the value of e:

which can be written as:

This equation is the basic form of the Ayrton-Perry formula.
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2. ANALYTICAL FORMULATION OF THE EUROPEAN BUCKLING CURVES
2.2 Eccentricity of the Applied Load
If the axial compression load is applied with an eccentricity ec on an initially straight pin-ended 
column (Figure 3), a bending moment (N ec) is introduced which increases the buckling effect. This 
effect obviously increases along with axial load.
It is possible to show that the total maximum deflection e of the column is equal to:

e = ec - ec/{cos[l/2 (N/EI)1/2]

and the "amplification factor" to: 1/cos [π/2 (N/Ncr)1/2]
Now, if the combined effect of the initial deflection and of the eccentricity of loading is considered, 
the stress is approximately equal to:

This relationship is correct within a few percent for 

all values of σb from 0 to σcr.
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2. ANALYTICAL FORMULATION OF THE EUROPEAN BUCKLING CURVES
2.3 Ayrton-Perry Formula
The classical form of the Ayrton-Perry formula is:

(σcr - σb) (fy - σb) = η σcr σb (11)
This is the form of Equation (8) if h = (eo A) / W
The coefficient h represents the initial out-of-straightness imperfection of the column but it can also 
include other defects such as residual stresses in which case it is called the "generalized 
imperfection factor".
It is possible to write the Ayrton-Perry formula under another form:

This form leads to the European formulation [1].
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2. ANALYTICAL FORMULATION OF THE EUROPEAN BUCKLING CURVES
2.4 Generalized Imperfection Factor
The generalized imperfection factor takes into account all the relevant defects in a real column 
when considering buckling: geometric imperfections, eccentricity of applied loads and residual 
stresses; inelastic properties are not considered because they only influence stub columns. The 
generalized imperfection factor can be expressed through the coefficient h representing the effect 
of deflections:

where γ = λ / eo, represents the equivalent geometrical imperfection (which is the ratio of the 
length over the equivalent initial curvature of the column).
Then using L = l.i, W = I / v and i2 = I / A, h can be written as:

η = λ / γ (i/v) (16)
where (i/v) is the relative diameter of the inertia ellipse in the axis where buckling occurs.
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2. ANALYTICAL FORMULATION OF THE EUROPEAN BUCKLING CURVES
2.4 Generalized Imperfection Factor
As λ = η (E/fy)1/2, introducing the plateau N = 1 when λ <= λo, the previous relationship can be 
written as:

because all the European buckling curves were established with fy = 255 MPa (the real value of the 
yield stress having a very small influence).
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2. ANALYTICAL FORMULATION OF THE EUROPEAN BUCKLING CURVES
2.3 European Formulation
Using h expressed as:

the smallest solution of the Equation (14) is:

Multiplying by the conjugated term and choosing λo = 0,2, this relationship gives the European 
formulation:

Where

χ is the reduction factor considered in Eurocode 3 [1].
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2. ANALYTICAL FORMULATION OF THE EUROPEAN BUCKLING CURVES
2.3 European Formulation
The different shapes of cross-sections used to design steel columns have the coefficient α varying 
from 0,21 to 0,76 and it is possible to represent the real behaviour of all classical columns using the 
four curves (a, b, c and d) shown in Figure 4, α increasing with the imperfections.
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2. ANALYTICAL FORMULATION OF THE EUROPEAN BUCKLING CURVES
2.3 European Formulation
α takes into account two kinds of imperfections (geometrical and mechanical). It can be written 
as α = α1 + α2, where α1 represents the mechanical and α2 the geometrical imperfections. 
Considering only the geometrical imperfections, the European buckling curves were established 
with an initial curvature equal to L/1000 (Lecture 7.5.1); this gives

α2 = 90,15/[1000 (i/v)].
Considering now the equivalent initial deflection: eo = L/γ , linked to the generalized imperfection 
factor η (Equation (15)) and using Equation (18), gives:

which represents the equivalent initial bow imperfection of a pin-ended column including the initial 
crookedness and the effect of residual stresses; this has to be taken into account in a second order 
analysis. The design values relative to each European buckling curve are given in Table 1.
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3. TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING
For hot-rolled steel members, with the type of cross-sections commonly used for compression 
members, the relevant buckling mode is generally flexural buckling; however, in some cases, 
torsional or flexural-torsional modes may govern and these must be investigated for all sections 
with small torsional resistance.
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3. TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING
3.1 Cross-section Subjected to Torsional or Flexural-torsional Buckling
Concentrically loaded columns can buckle by flexure about one of the principal axes (classical 
buckling), twisting about the shear centre (torsional bucking) or a combination of both flexural and 
twisting (flexural-torsional buckling).
Torsional buckling can only occur if the shear centre and centroid coincide and the cross-section can 
rotate; this leads to a twisting of the member. Z-sections and I-sections with broad flanges can be 
subject to torsional buckling; pylons, fabricated from angle sections, must also be checked for this 
kind of instability.

Symmetrical sections with axial load not in the plane of symmetry, and non-symmetrical sections 
such as C-sections, hats, equal-leg angles, T-sections and singly symmetrical I-sections, i.e. sections 
where the shear centre and the centroid do not coincide, must be checked for flexural-torsional 
buckling.
Figure 5 gives examples of sections which must be checked for torsional or flexural-torsional 
buckling.
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3. TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING
3.1 Cross-section Subjected to Torsional or Flexural-torsional Buckling
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3. TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING
3.2 Torsional Buckling
The analysis of torsional bucking is quite complex and is too long to be included here. The critical 
stress depends on the boundary conditions and it is very important to evaluate precisely the 
possibilities of rotation at the ends. The critical stress depends on the torsional stiffness of the 
member and on the resistance to warping deformations provided by the member itself and by the 
restraints at its ends.
The differential equation for torsional buckling is:

and the critical load for pure torsional buckling, Ncrθ , is:

where ro is the polar radius of gyration, G the shear modulus of elasticity, N the axial load, θ the 
twist angle, ID the torsion constant, and Iw the warping constant. Lecture 7.9.2 gives more details 
about the physical meaning and the computation of the warping constant.
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3. TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING
3.2 Torsional Buckling
To check a compression member with torsional 
buckling, a new reference slenderness must be 
evaluated:

where σcrq is the elastic critical stress for 
torsional buckling obtained with the critical load 
Ncrθ (Equation (24)).
Generally flexural buckling occurs at a lower 
critical stress than torsional buckling.

Figure 6 illustrates this phenomenon for the 
case of a cruciform strut.
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3. TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING
3.3 Flexural-torsional Buckling
This is the combination of flexural and torsional buckling and its analysis is too complex to be 
covered in detail here.
The three basic equilibrium equations governing this sort of buckling are:

where, yo and zo are the coordinates of the shear centre and v and w are the deflections, as shown 
in Figure 7.
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3. TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING
3.3 Flexural-torsional Buckling
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3. TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING
3.3 Flexural-torsional Buckling
The critical load for pure torsional buckling is obtained from the lowest root of the following
equation:
ro

2 (Ncr - Ncrz) (Ncr - Ncry) (Ncr - Ncrq ) - Ncr
2 zo

2 (Ncr - Ncry) - Ncr
2 yo

2 (Ncr - Ncrz) = 0 (29)

where, Ncry and Ncrz are respectively the critical loads for pure flexural buckling about the axes y and 
z, and Ncrq is defined by Equation (24).
Cross-sections with one (or two) axis of symmetry give yo (or zo) = 0 leading to a simplification of the 
previous equation; for example, a section with two axes of symmetry gives:
(Ncr - Ncrz) (Ncr - Ncry) (Ncr - Ncrq ) = 0 (30)

and the members buckle at the lowest of the critical loads without interaction of modes.
This lecture only considered the effects of imperfections on the behaviour of compressed steel 
columns and, therefore, no end moments are considered. The flexural-torsional buckling, in this 
case, will be due to the effects such as eccentricity of loading or cross-sectional defects.
To check a compression member with flexural-torsional buckling, a new reference slenderness must 
be evaluated in a similar way as for torsional buckling (Equation (25)).
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4. CONCLUDING SUMMARY
• The effects of imperfections on the phenomenon of buckling are discussed. Initial out-of-

straightness, eccentricity of loading and residual stresses have an important influence on buckling 
of slender columns and columns of medium slenderness.

• The Ayrton-Perry formula describes the behaviour of real columns. It is the basis of the European 
buckling curves.

• European buckling curves are explained; these include a generalized imperfection factor.
• Torsional buckling and flexural-torsional buckling are introduced.
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